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Abstract. In samples from 56 populations of Car-
damine amara, representing four diploid subspecies
(subspp. amara, opicii, balcanica, and pyrenaea)
and two tetraploid subspecies (subspp. austriaca
and olotensis) from different parts of the European
distribution area, four enzyme systems with 23
alleles were studied. These data, together with
previous morphological and karyological data,
suggest that the distribution and variation pattern
within the species was strongly influenced by the
last glacial period and postglacial migrations.
Cardamine amara subsp. pyrenaea is monomorphic
for a unique allele, and subsp. balcanica has a
unique allele, too which, however, is not fixed in all
populations of the taxon. Both taxa seem to be relic
ones, although otherwise subsp. balcanica in re-
spect of allelic spectrum much resembles subsp.
amara. The other two diploid subspecies, subsp.
amara and subsp. opicii, are not characterised by
presence of unique alleles but differ in allele
frequencies. The two tetraploid subspecies have
different evolutionary histories. C. amara subsp.
austriaca seems to be an autopolyploid derivative
of subsp. amara which colonised open space
offered by retreating glaciers in the Eastern Alps.
C. amara subsp. olotensis from the Iberian
Peninsula represents most probably a polyploid of
preglacial time.

Key words: Cardamine amara, Large Bitter-cress,
isozymes, polyploidy, glaciation, relic taxa.

Introduction

Cardamine L. comprises several polyploid
complexes in its European distribution area,
e.g. the C. pratensis group, C. amara L. and the
C. raphanifolia group. Until now detailed
attention has been paid mainly to the
C. pratensis complex, which consists of several
diploid taxa and higher polyploids up to
dodecaploid level, including dysploids and
aneuploids (e.g. Lovkvist 1956; Urbanska-
Worytkiewicz and Landolt 1974; Marhold
1994a,b, 1996; Marhold and AncCev 1999;
Franzke and Hurka 2000).

Recent studies of populations of C. amara
in various parts of Europe revealed an inter-
esting pattern of karyological and morpholog-
ical variation classified at the subspecific level
(Lihova et al. 2000; Marhold 1992, 1999;
Marhold et al. 1996). Four diploid subspecies
are currently recognised within C. amara:
subsp. amara, widespread in most of Europe
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extending to Asia, except some European
mountain ranges where it is replaced by other
subspecies; subsp. opicii (J. Presl et C. Presl)
Celak. occurring at the higher altitudes of the
Sudety Mts. and Carpathians (Marhold 1992)
(for the distribution of all subspecies in studied
part of Europe see Fig. 1); subsp. balcanica
Marhold, Ancev et Kit Tan, occurring in the
mountains of SW Bulgaria and NE Greece
(Marhold et al. 1996); and subsp. pyrenaea
Sennen, a recently “rediscovered” taxon of the
Eastern Pyrenees (Lihova et al. 2000). There
are two tetraploid subspecies in C. amara.
They occupy different restricted areas: subsp.
austriaca Marhold occurs in the Eastern Alps
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and neighbouring areas (Marhold 1999), while
subsp. olotensis occupies a small area in
Catalonia (Lihova et al. 2000). The results of
random amplified polymorphic DNA (RAPD)
analyses of all six subspecies of Cardamine
amara (Lihova et al. 2000) based on a restrict-
ed amount of material supported the above-
mentioned taxonomic treatment except that
diploid subsp. amara and tetraploid subsp.
austriaca were not differentiated from each
other. This can be explained by the possible
autotetraploid origin of subsp. austriaca
from subsp. amara. C. amara subsp. pyrenaea,
subsp. opicii, subsp. balcanica, and especially
subsp. olotensis formed well-defined groups in

Fig. 1. Map of distribution of sample sites, and distribution areas, of Cardamine amara subsp. amara (circle O,
=3, representing the approximate distribution area, which further extends to the east to Asia, in some parts of
the Balkan Peninsula the detailed distribution is still poorly known), C. amara subsp. opicii (square [], &SN),
C. amara subsp. austriaca (triangle A\, wza, only marginally overlapping with the area of subsp. amara),
C. amara subsp. balcanica (pentagon O, =3), C. amara subsp. olotensis (star ¥¢), and C. amara subsp. pyrenaea
(crossed circle @) (distribution areas of the latter two subspecies coincide with distribution of sample sites). The
taxonomic status of the central Italian populations is uncertain and it is being studied now
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neighbour joining-distance analysis as well as
in principal coordinate analysis of the RAPD
data.

The distribution area of C. amara subsp.
austriaca is clearly influenced by the migra-
tions and evolutionary processes connected
with Pleistocene glaciation. Its occurrence is
centred in the area covered by the glacier
during the last glaciation and for most of this
area it represents the only representative of this
species; its establishment was very likely con-
nected with the quick occupation of these areas
after retreat of the glacier. The distribution of
taxa influenced by glaciation and postglacial
migrations is documented in recent literature,
especially in connection with the use of various
kinds of molecular methods (e.g. Taberlet
et al. 1998; Hewitt 1999, 2000).

Franzke and Hurka (2000) analysed iso-
zymes, internal transcribed spacer (ITS), non-
coding chloroplast DNA, and RAPDs to
elucidate phylogenetic relationships and his-
torical biogeography of the Cardamine praten-
sis complex, closely related to the group
studied in the present paper.

The aim of the present paper is to analyse
isozyme variation in Cardamine amara for
phylogenetic and historical biogeographic sig-
nals.

Material and methods

Plant material. Living plants of Cardamine amara
L. comprising all the currently recognised six
subspecies were collected in the field and trans-
ferred to the greenhouse of the University of
Osnabriick, Germany, where they were grown
under uniform conditions (for list of localities see
Table 1 and for their distribution Fig. 1). Young
leaves were harvested and stored at —80 °C.
Samples from 56 populations or sub-populations
(altogether 351 plants, see Table 1) of C. amara
were studied. Voucher specimens are deposited in
the herbarium SAV.

Chromosome counts. Chromosome numbers of
the studied populations are presented in Table 1. In
most cases they are previously published counts
(Lihova et al. 2000; Marhold 1994a, 1999; Marhold
et al. 1996). In a few cases they represent new data

by Marion Huthmann counted by the procedure
described in Koch et al. (1996: 588), on at least ten
plants from each locality. Voucher specimens for
these counts are deposited in WHB.

Isozyme analysis. The following enzyme sys-
tems were assayed: aspartate aminotransferase
(AAT, EC 2.6.1.1); glutamate dehydrogenase
(GDH, EC 1.4.1.2-4); leucine aminopeptidase
(LAP, EC 3.4.11.1); phosphoglucomutase (PGM,
EC 2.7.5.1). Extracts were prepared from 0.5 g
frozen leaves of single plants in 1 ml ice-cold
extraction buffer (0.165 M Tris-HCI, pH 8.0, and
0.107 M glycine), and 200 mg Amberlite IRA-401
(Serva, Heidelberg) were added. The extract was
filtered through four layers of mull and centrifuged
at 4 °C for 30 min at 20,000 rpm. The supernatant
was stored at —80 °C. Electrophoresis was per-
formed in a continuous system on 5.5% (w/v,
GDH) and 7.5% (w/v, AAT, LAP, PGM) poly-
acrylamide gel using different buffer systems and
staining procedures (see Franzke and Hurka (2000)
for AAT, GDH, and LAP; Mummenhoff and
Hurka (1995) for PGM). The allozymes were
characterised by their Ry values relative to an
internal standard with a migration distance of 100
(=allele I of the respective locus). The term
allozyme is used in the present paper also for
tetraploids for simplicity, although no genetic
analysis of inheritance patterns has been carried
out.

Data analyses. For the samples from the
diploid populations (subsp. amara, subsp. opicii,
subsp. balcanica, and subsp. pyrenaea), allele
frequencies within populations were determined,
and genetic (chord) distances were calculated
according to Cavalli-Sforza and Edwards (1967)
(for the arguments in favor of this distance measure
compared to distance according to Nei (1972, 1978)
see Koch and Hurka (1999) and references therein).
For the tetraploid taxa (subsp. austriaca and
subsp. olotensis) frequency data presented in
Results section reflect presence/absence of alleles
in individuals rather than actual allelic frequencies
as it was hard to evaluate the number of alleles in
particular polyploid individuals based on intensity
of bands. Therefore only the presence and absence
of alleles was used for numeric evaluation of
tetraploid populations. Matrix of frequencies for
diploid populations, and a matrix of presence/
absence data for diploid and tetraploid populations
were subjected to principal component analysis.
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The matrix of presence/absence data for diploids
and tetraploids was also subjected to the non-
parametric k-nearest neighbours classificatory
discriminant analysis (Klecka 1980) using crossvali-
dation and currently recognised subspecies as
groups. This method develops classificatory crite-
rion based on n — 1 cases (out of total n cases
included in the analysis) and this criterion is in turn
applied to the case left out. The whole procedure is
repeated n times, and estimates extent of separation
of the classified groups. Based on the distance
matrix for the diploid population samples, a
phenogram using UPGMA (unweighted pair-
group arithmetic average clustering, average link-
age) algorithm and an ordination diagram using
principal coordinate analysis (PCO) were generat-
ed. The computations were performed with the
SAS (SAS Institute 1990a,b), BIOSYS-1 version
1.7 (Swofford and Selander 1989), and SYN-TAX
2000 (Podani 2001) statistical program packages.

Results

Isozyme analysis. The distribution of alleles at
the four enzyme systems analysed (AAT,
GDH, LAP, PGM) among all taxa (diploid
and tetraploid) of Cardamine amara are shown
in Table 2 as presence/absence data, and in
Table 3 as allele frequencies.

Two loci with 6 alleles were analysed for
AAT (Aatl and Aat2). Allele Aat2-7 was unique
for subsp. pyrenaea and fixed in all accessions
studied. Allele Aat2-4 was found exclusively in
subsp. balcanica but detected only in three of the
seven surveyed populations. Two loci with 6
alleles coded for PGM (Pgml and Pgm?2). Allele
Pgm2-1 was discovered only in subsp. olotensis.
It was fixed in that subspecies. Allele Pgmli-2
occurred with high frequency in subsp. pyre-
naea. It was also but rarely recorded in subsp.
balcanica and subsp. olotensis (in one popula-
tion each). Two loci with five alleles were
analysed for LAP (Lap2 and Lap3). The sub-
species opicii and balcanica were monomorphic
for Lap2-2. This allele had high frequency in
subsp. pyrenaea, too, but was less frequent in
subsp. amara (Table 3). The zymograms for
GDH could be genetically interpreted by two
loci (Gdhl and Gdh2) with 6 alleles. In subsp.

Table 2. Distribution of alleles at four analysed loci complexes among diploid (2x) and tetraploid (4x) subspecies of Cardamine amara

Gdhl Gdh2

Lap3

Aat?2 Pgmli Pgm?2 Lap?2

Aatl

Locus

Allele

Taxon

2x — opicii

+

2x — balcanica
2X — amara

+
+

2X — pyrenaea
4x — austriaca
4x — olotensis
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austriaca, Gdh2-1 was nearly fixed, whereas it
was detected only in three of the 11 populations
surveyed in subsp. amara. These populations
were within or close to the range of subsp.
austriaca. The allele Gdh2-1 was also found in
one population of subsp. balcanica, but neither
recorded from subsp. pyrenaea nor from subsp.
olotensis (Tables 2 and 3). The allele Gdh2-2 was
fixed in subsp. opicii and subsp. pyrenaea and
was also recorded from subsp. olotensis and
subsp. austriaca.

Principal component analyses (PCA). Or-
dination diagrams based on allelic frequencies
(diploid taxa only, not shown) and on pres-
ence/absence data (all taxa, Fig. 2) showed
similar patterns. C. amara subsp. pyrenaea
appeared in a clearly separated position along
the first component axis, while subsp. amara,
subsp. opicii and subsp. balcanica formed only
partly overlapping groupings. The two groups

Prin3 v}

4.19 1 V]

-1.06

-3.69
3.32

of tetraploids occupied different positions on
the ordination diagram. While subsp. olotensis
was separated from the rest of material along
the third component axis, samples of subsp.
austriaca overlapped to a large extent with
those of subsp. amara.

Principal coordinate analyses (PCO). PCO
of the diploid populations (Fig. 3) based on
chord distances of Cavalli-Sforza and Edwards
(1967) revealed C. amara subsp. pyrenaea in
a clearly separated position along the first
axis and subsp. opicii along the first and
second axes. C. amara subsp. amara and
subsp. balcanica partly overlapped, but this
overlap was less apparent in the diagram of
PCO (not shown) where subsp. pyrenaea was
omitted (in order to get a better resolution on
the first few axes).

Non-parametric classificatory discriminant
analysis. All accessions of C. amara subsp.

4.12

Fig. 2. Principal component analysis of diploid and tetraploid populations of Cardamine amara based on
presence/absence of alleles (heart — subsp. amara, pyramid — subsp. balcanica, cube — subsp. opicii, spade —
subsp. pyrenaea, ball — subsp. austriaca, club — subsp. olotensis). The first three component axes account for

22.2%, 13.4% and 10.6% of variation respectively
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opicii, subsp. balcanica, subsp. pyrenaea and
subsp. olotensis were classified by the classifi-
catory discriminant analysis according to their
taxonomic position. Two samples (out of 11)
of subsp. amara were incorrectly classified into
subsp. austriaca and one sample of subsp.
austriaca (out of 12) was incorrectly classified
into subsp. opicii.

Cluster analysis. Cluster analysis of the
diploid populations (not shown), based on
chord distances of Cavalli-Sforza and Edwards
(1967) performed by UPGMA clustering meth-
od showed only two compact subspecies
clusters, namely those composed of subspp.
pyrenaea and opicii. Neither populations of
subsp. balcanica nor those of subsp. amara
formed compact clusters in this analysis. This
might be interpreted as a consequence of the
wide variation of subsp. amara (corresponding
to its large distribution area compared with
other subspecies) as well as indicating a close
position of subspp. amara and balcanica.

PC3
Va &)
0277 1 2 5 )
Va Y,
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ral
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© A

-0.080 ¢

-0.258
0.262

Discussion

Differentiation at the isozyme level within
C. amara reflects to certain extent the morpho-
logically and geographically based subspecies
concept. Presence/absence data and differences
in allele frequencies characterise most of the
infraspecific taxa. There was enough informa-
tion in the isozyme data (presence/absence of
alleles) to discriminate subspecies as was dem-
onstrated by the classificatory discriminant
analysis. It should be stressed, however, that
this analysis gives more weight to the characters
variable among predefined groups (in our case
subspecies) than to those with larger within-
group variation. The results of PCA, which
gives to all characters equal weight, based on the
same data provided more overlapping group-
ings, but still the tendency of populations for a
given subspecies to group together was appar-
ent. The same grouping pattern was apparent
also in the analysis of the diploid taxa using

0.324

0421 0291

Fig. 3. Principal coordinate analysis of diploid populations of Cardamine amara based on chord distances of
Cavalli-Sforza and Edwards (1967) (heart — subsp. amara, pyramid — subsp. balcanica, cube — subsp. opicii,
spade — subsp. pyrenaea). The first three coordinate axes account for 21.8%, 13.7% and 8.2% of variation,

respectively
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chord distance and PCO and partly also in the
cluster analysis.

From among the diploid taxa, Cardamine
amara subsp. pyrenaea was monomorphic for
a unique allele (Aat2-7), and subsp. balca-
nica had a unique allele, too (Aat2-4) which,
however, was not fixed in the subspecies. This
allele was also detected in C. flexuosa (Hurka,
unpubl.). Both subspecies, pyrenaea and bal-
canica, occur on the margin of the entire
distribution range of C. amara in areas, which
are known as refuge areas during the last
glaciation periods (e.g. Hewitt 1999). This
coincidence (unique alleles and present distri-
bution area) argues for a relic character and
considerable age of these two diploid subspe-
cies. This view is supported by the RAPD data
where groupings of subsp. pyrenaea and subsp.
balcanica had high bootstrap values (Lihova
et al. 2000). The other two diploid subspecies,
subsp. amara and subsp. opicii, were not
characterised by presence of unique alleles
but differed in allele frequencies. The three
diploid subspecies C. amara subsp. amara,
subsp. opicii and subsp. balcanica, although
partly differentiated at isozyme loci, still seem
to be closely related. Their distribution areas
either overlap (subsp. amara vs. subsp. opicii)
or they occur in close neighbourhood (subsp.
amara vs. subsp. balcanica) and there is prob-
ably gene flow between these taxa.

The two tetraploid taxa strongly differ in
isozyme pattern which is most probably the
result of their different evolutionary histories.
C. amara subsp. olotensis is well separated from
all other subspecies by the unique allele (Pgm2-
1) and to a certain extent by the frequency of
other alleles. On the other hand, tetraploid
subsp. austriaca differs only slightly from the
diploid subsp. amara. The same pattern was
found while evaluating the RAPD data. While
subsp. olotensis was clearly different from the
rest of the material of the species, subsp. amara
and subsp. austriaca did not form separate
groupings or clusters in any analysis (Lihova
et al. 2000). This is also in accordance with the
morphological data and distribution of these
taxa. C. amara subsp. olotensis differs from all

other subspecies of C. amara by the yellow
anthers, which is an important and stable
character in this genus, as well as in quantitative
characters (Lihova et al. 2000). The tetraploid
C. amara subsp. austriaca is morphologically
very similar to its most likely diploid progenitor,
subsp. amara. The only completely reliable
character is the size of pollen grains, while other
characters, such as the number of leaves, leaf-
lets, and size of some flower parts overlap. Such
poor morphological differentiation of this taxon
favours a hypothesis of its relatively recent
origin. The tetraploid taxa also occupy very
different distribution areas. The distribution
area of subsp. austriaca coincides with an area
heavily affected by the Pleistocene glaciation
which lead Marhold (1999) to hypothesise its
origin during the last interglacial or in the early
postglacial periods. C. amara subsp. olotensis
occupies a small relic area in Catalonia, which
may indicate its preglacial origin.
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