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Chapter 6. Multivariate morphometrics and its 

application to monography at specifi c 

and infraspecifi c levels

Karol Marhold

Introduction

Multivariate morphometrics is a powerful tool for assessment of patterns of vari-
ation at the specific and infraspecific levels. Unlike the cladistic approach (and 
other phylogenetic methods) that aims to reconstruct evolutionary relationships 
among established taxa, morphometrics is particularly useful for drawing lines 
between taxa, to ascertain differences between different cytotypes or geographi-
cal races, or to discover the most important characters that differentiate taxa. As 
these are issues that often concern the monographer, multivariate techniques can 
be particularly useful. Multivariate morphometrics comprises a wide spectrum 
of methodological approaches. The choice of a particular method or approach 
depends on the data being used, hypotheses to be tested, and questions being 
asked. Although current use of multivariate methods in taxonomy stems from 
the phenetic approach in classification (also called numerical taxonomy, statisti-
cal systematics, or numerical phenetics), established at the end of the 1950s, it 
is now acknowledged that this approach has limitations and should be used in 
situations where similarity reasonably reflects close relationship (i.e., mostly on 
the level of species and below).

There are numerous examples of successful applications of multivariate 
morphometrics, especially if it is applied in concert with other methodological 
approaches such as molecular systematics and/or evaluation of ploidy level either 
by chromosome counting or flow cytometry (e.g., Brysting & Elven, 2000; Perný 
& al., 2004, 2005; Smith & Waterway, 2008; Kučera & al., 2010; Rivero-Guerra, 
2011). Both these latter methodological approaches are crucial for understanding 
plant variation. It is common now to first delimit groups of populations (poten-
tial taxa) using genetic data (both molecular and ploidy level), subsequently to 
search for morphological differences among such genetically defined groups, 
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and finally, to consider appropriate rank for the recognized taxa (e.g., Andrés-
Sánchez & al., 2009; Barrett & Freudenstein, 2009; Španiel & al., 2011).

The current role of the “traditional morphometrics” was appropriately 
summarized by Henderson (2006) in relation to the systematics of palms: “… 
if we can move toward a more scientific systematics of palms …, incorporating 
morphometric methods, then we will have a more stable systematics. We will 
also have a sound basis on which to study other problems, such as subspecific 
variation, hybrids and hybrid zones, species complexes and biogeographical pat-
terns. Furthermore, we should complete descriptive systematic studies before we 
attempt phylogenetic analysis, although these things are often carried out the 
wrong way round.”

Overall, multivariate methods can be divided into (1) those used for gener-
ating taxonomic hypotheses, and (2) those employed for their testing. The first 
category includes a wide spectrum of clustering and ordination methods such 
as principal components analysis, principal coordinates analysis, or non-metric 
multidimensional scaling. The hypotheses-testing methods comprise several 
kinds of discriminant analyses. Here we provide only a brief account of the multi-
variate methods used in taxonomy. For more detail the books by Dunn & Everitt 
(1982, reprinted 2004), Krzanowski (1990), Podani (1994, 2000), or Legendre & 
Legendre (1998) are recommended. Clustering techniques are nicely explained by 
Everitt (1986), and discriminant analyses by Klecka (1980). For ordination meth-
ods, an excellent source of information is the web page “Ordination methods for 
ecologists” by Mike Palmer (http://ordination.okstate.edu/).

History (phenetic approach)

The phenetic approach in taxonomy dates to the papers by Michener & Sokal 
(1957) and Sneath (1957a). Charles Michener and Robert Sokal demonstrated a 
more objective approach to classification of the bee family Megachilidae, whereas 
Peter Sneath applied a similar approach to classification of bacteria. Subsequently, 
Sneath and Sokal published their ideas in the book Principles of numerical tax-
onomy (1963), which they developed further in Numerical Taxonomy: The Prin-
ciples and Practice of Numerical Classification (Sneath & Sokal, 1973). In their 
so-called “neo-Adansonian” principles, they postulated that the greater the con-
tent of information supporting taxa in a classification and the more characters 
on which it is based, the better the classification will be. They considered every 
character to have equal value in creating “natural” taxa, and they suggested bas-
ing classifications on overall similarities. Although it is now broadly acknowl-
edged that the phenetic approach is not often efficaceous at higher taxonomic 
levels, the most important message from numerical taxonomy, i.e., stressing the 
importance of detailed study of as many characters as possible, is still fully valid. 
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Moreover, comparisons of individuals, populations, ploidy levels, and/or infra-
specific taxonomic entities, still based on overall similarity, can help us improve 
our classifications. This approach is currently used mostly in morphometric 
studies, but some methods are applied also in evaluation of molecular data such 
as in analysis of DNA fragment length polymorphisms. The phenetic approach 
is based on a wide spectrum of methods of multivariate analysis. Rapid spread 
of usage of these methods at the end of the 1950s and beginning of the 1960s 
was closely linked with development of computer technologies. Although most of 
the multivariate techniques were known for decades, their practical applications 
were hampered by computational difficulties.

Characters and character states

Morphological, molecular and other characters that characterize plant taxa can 
be measured or scored in the following scales (Anderberg, 1973; Podani, 2000):

1. Nominal scale—in this case the only valid mathematical operators are 
equality (=) or inequality (≠) and character states are non-ordered. Char-
acter states (e.g., ovate, obovate, or lanceolate shapes of leaves) are usually 
coded by numbers, but their choice is purely arbitrary.

2. Ordinal scale—here apart from equality or inequality also operators < and 
> can be applied, which gives the possibility to order objects according 
to the degree of presence of a certain property (e.g., density of hairs on 
leaves). Nevertheless, the exact differences among character states are not 
captured in this scale.

3. Interval scale—in this scale subtraction and addition also apply, which 
enable expression of degrees of difference among objects with respect to 
measured characters. The position of zero on this scale is chosen arbi-
trarily.

4. Ratio scale—gives the possibility of expressing ratios among objects. 
Operator of division can also be applied here. The value of zero here means 
absence of a particular characteristic.

There is also another way to classify characters:
1. Qualitative characters: (a) binary—characters with two character states, 

mostly presence or absence, usually coded by 0 and 1; (b) multistate—
characters with three or more character states, usually coded by integer 
values 0 to x.

2. Semiquantitative characters (rank-ordered, ordinal)—character states rep-
resent in this case usually a small number of ordered classes and the differ-
ences between neighboring values are not constant (or precisely defined). 
Such characters can be treated either as quantitative (with certain reser-
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vations) or qualitative, depending on the particular type of analysis or 
nature of character.

3. Quantitative characters—here the differences between neighboring values 
are constant and these characters can be divided into: (a) discontinuous 
(discrete, meristic) characters with the values expressed in natural num-
bers without intermediate values, (b) continuous characters with indefi-
nite amount of character states expressed in real numbers.

Sampling design and selection of characters

The sampling design is probably the most important step in the morphometric 
analysis. It mostly depends on the particular questions or aims of analyses; there 
are also properties of particular groups of plants that must be taken into consid-
eration. Sampling itself should involve a random element and, at the same time, 
samples must be taken so as to maximize variation of the collected material. The 
wider the morphological variation represented in the sample, the better we assess 
the variability of the species. In estimating sample size, we particularly need to 
take into account the reproductive system. For example, in autogamous (selfing) 
plants the amount of sampled populations should be higher, possibly at cost of the 
number of sampled plants per population, whereas in allogamous (out-crossing) 
ones, both individual and populational variation should be well represented.1 The 
population size should be considered as well, especially in the case of endangered 
taxa. Sampling populations in the field is obviously much more representative 
than use of specimens from herbaria. In the latter case one has to be aware that the 
intra-population variation might be hidden; there are some characters that are not 
preserved on herbarium specimens. Botanists also tend to collect “unusual” speci-
mens, which are likely to be over-represented in herbaria. In spite of these limita-
tions, however, herbarium collections are irreplaceable in cases of remote areas or 
highly endangered species. In sampling design, one also has to consider the distri-
bution of studied taxa and type localities, karyological variation (all known cyto-
types should preferably be included in the analyses), as well as different habitats 
occupied. In the selection of morphological characters, those traditionally used in 
Floras and identifications keys should always be included (to test their relevancy 
for the particular taxa). However, one should avoid characters strongly influenced 
by ecological conditions or those from not yet fully developed organs. For some 
analyses highly correlated pairs of characters or those invariable within particular 
groups should be avoided (see below).

1 Gilmartin (1974) and Gilmartin & Hart (1986) proposed a method using the coefficient of 
phenetic variation for estimating the number of specimens to be sampled in a population 
(or taxon).
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Resemblance coefficients

Once the data matrix (with the objects in rows and characters in columns, or vice 
versa) is available, the next step in multivariate analyses is the computation of a sec-
ondary data matrix, expressing pair-wise interrelationships among objects (simi-
larity, dissimilarity) or characters (correlation). There is a wide spectrum of avail-
able resemblance coefficients and only few representative ones are given here. More 
details can be found, e.g., in Podani (1994, 2000) or Legendre & Legendre (1998).

Resemblance coefficients can be generally classified into the following four 
categories:

(1) Coefficients of distance for quantitative and binary characters (metric dis-
tances):

The most widely used coefficient of distance is the Euclidean one:

where xik is the value of character k for the object i, xjk is the value of character 
k for the object j, p is the total number of characters included in the analysis.

An alternative possibility is represented by the Manhattan (Hemmings, city-
block) metric:

This metric gives greater weight to differences among higher numbers of char-
acters (its value does not depend so much on the considerable difference in just 
one character).

The Minkovski metric represents a more generalized case:

This includes Manhattan metrics (where r = 1) and Euclidean distance (where 
r = 2) as special cases.

It should be taken into consideration that all the above-mentioned coeffi-
cients are dependent on the scale at which characters are measured. Therefore, if 
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characters are measured at different scales (which is often the case), they should 
be standardized prior to the analyses to avoid unequal influences on the results. 
One commonly used standardization method is by standard deviation:

where si is a standard deviation of character i, xij is the value of the character i on 
the object j and x–i is the mean value of the character i.

Mahalanobis generalized distance eliminates the overweighting, which might be 
due to correlation of characters, and which appears, e.g., when Euclidean distance 
is used (Podani, 2000):

where xi and xj are column vectors corresponding to objects i and j, respectively, 
W–1 is the inverse of the variance-covariance matrix and wkr is one of its elements 
(where k and r are characters). This distance coefficient is used in the discrimi-
nant analyses.

(b) Similarity coefficients for binary data:

Coefficients designed for binary data should be used when the primary data 
matrix consists exclusively of binary characters (presence/absence data). There 
is a large number of coefficients for binary data that are used in taxonomic and 
especially ecological applications. A detailed account of such coefficients can 
be found in Podani (2000); only the most important ones are presented here. 
Suppose that we have objects i and j, characterized in the contingency table as 
follows:

Object i

Object j
+ –

+ a b
– c d

a, the number of characters for which both compared objects have a positive 
value (+ or 1) (positive match)

b, the number of characters for object i with a negative value (– or 0) and 
object j with a positive value (+ or 1) (mismatch)
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c, the number of characters for object i with a positive value (+ or 1) and object 
j a negative value (– or 0) (mismatch)

d, the number of characters for which both compared objects have a negative 
value (– or 0) (negative match).

There are two possible basic alternatives for computing the similarity coefficient, 
depending on whether negative matches should be taken into consideration. In 
the simple case where we code an ovate leaf shape as 1 and lanceolate as 0, both 
positive and negative matches make sense and both values “a ” and “d    ” should be 
included in computing the similarity coefficient. However, in the case that nega-
tive or zero value means an absence of a given character, and this absence can 
be caused by multiple reasons, then a negative match does not necessarily mean 
that the objects are similar with respect to this character. In such a case value “d  ” 
should not be used in computing the similarity coefficient.

Depending on whether negative matches are taken into consideration or not, 
two coefficients are most widely used: simple matching 

and Jaccard 

There are also coefficients that accord “a” and “d   ” values in an asymmetrical way, 
giving different weights to “b” and “c” compared to “a” and “b”.

(c) Coefficients for mixed data:

The above-mentioned coefficients do not apply to cases where the primary matrix 
consists of a mixture of binary, multistate qualitative, ordinal, and quantitative 
characters. For such cases coefficients for mixed data are available (Gower, 1971; 
Podani 1980, 1999).

(d) Correlation coefficients:

Correlation coefficients, unlike the above-mentioned ones that measure simi-
larities or dissimilarities among objects, give evidence about the relations among 
measured characters.

The Pearson product-moment correlation coefficient measures linear depen-
dence between two variables in the scale from –1 to +1. Its use requires a normal 
distribution of characters:
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where n is the number of objects, xi1 is the value of character 1 for the object i,  xi2 
is the value of character 2 for the object i, x–1 and x–2 are the mean values of char-
acters 1 and 2, respectively.

In the case that monotonic, non-linear dependence of characters is expected, 
rank (non-parametric) coefficients should be used. Spearman’s rank correlation 
coefficient is then one of the possible choices:

where di is the difference in the order of object i on characters x1 and x2 (for all 
characters, the order of objects is determined, and values of characters xi1 to xin 
are replaced by the first n integers, i.e., by the order of objects on each character).

Covariance is in a sense similar to the product-moment coefficient, except 
that it is conditioned upon commensurability (it should be used only in cases 
where characters are measured in the same scales) and has neither lower nor 
upper bounds:

Cluster analysis

Clustering is a generic term for a wide range of procedures that can be used for 
the building of hierarchical or non-hierarchical classifications from multivariate 
data. Everitt (1986) described them as follows: “Given a number of objects or indi-
viduals, each of which is described by a set of numerical measures, devise a classi-
fication scheme for grouping of objects into a number of classes such that objects 
within classes are similar in some respect and unlike those from other classes.” 
The results of the hierarchical clustering are generally presented as dendrograms, 
while the non-hierarchical methods sort objects into a predefined number of 
non-hierarchical groups. Nevertheless, in taxonomic applications only a small 
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portion of available clustering methods is used. They mostly comprise sequential, 
agglomerative, hierarchical methods creating non-overlapping clusters (often 
abbreviated as SAHN methods). Agglomerative methods as opposite to divisive 
ones proceed in successive fusions of objects into groups and sequential methods 
proceed in subsequent steps as opposed to those that proceed in a single step. The 
SAHN methods comprise, among others, single linkage, complete linkage, aver-
age linkage, median, centroid and Ward’s methods. They are based on the opti-
mization of distance among objects and/or clusters, except the last one, which is 
based on optimization of homogeneity of clusters. More details than given here 
can be found in Podani (2000) or in Everitt (1986).

Each cluster analysis begins with computing the similarity or distance 
matrix. The choice of a similarity or distance coefficient obviously depends on 
the properties of data. If the characters are not measured in the same scale, they 
should be standardized prior to computation of the matrix.

Single linkage clustering (the nearest neighbor method; Florek & al., 1951; 
Sneath, 1957b) defines the distance between clusters as the distance between the 
most similar (or least dissimilar) pair of objects, considering only one object from 
each cluster (Fig. 6.1). The main disadvantage of this method is the so-called 
chain effect, which is that the initial clusters tend to attract other objects one by 
one, resulting in the pattern depicted in Fig. 6.6A.

Complete linkage clustering (the furthest neighbor method; Sørensen, 1948; 
Lance & Williams, 1967), is the opposite of the single linkage method. It defines 
the distance between clusters as the distance between the least similar (or most 
dissimilar) pair of objects, considering again only one object from each cluster 
(Fig. 6.2).

The average linkage clustering method (group-average clustering, UPGMA—
unweighted pair-group method using arithmetic averages; Sokal & Michener, 1958; 

A B

d

Fig. .. Geometric interpretation of the 
single linkage clustering method. The dis-
tance between clusters A and B is defined 
as the distance between the most similar 
(or least dissimilar) pair of objects.

A B

d

Fig. .. Geometric interpretation of the 
complete linkage clustering method. 
The distance between clusters A and B is 
defined as the distance between the most 
dissimilar (or least similar) pair of objects.
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Lance & Williams, 1966) defines the 
distance between two clusters as the 
average of the distances (or similari-
ties) between all pairs of objects that 
comprise one object from each cluster 
(Fig. 6.3).

In the centroid clustering meth -
od (Gower’s method, UPGMC—un-
weighted pair-group method using 
centroids; Sokal & Michener, 1958), 
once a cluster is formed it is replaced 
by the mean values of all charac-
ters (by centroids) and the distance 
between clusters is defined as that 
between their centroids (Fig. 6.4).

The median method (WPGMC—weighted pair-group method using cen-
troids, weighted centroid clustering; Gower, 1967) differs from the centroid one 
in that the new centroid of two merged clusters is halfway between their cen-
troids, which is closer to the smaller cluster, compared to the situation when the 
size of clusters is taken into consideration (Fig. 6.5).

The Ward’s method (minimization of the increase of error sum of squares; 
Ward, 1963) is based on the idea that the loss of information resulting from the 
merger of individuals into clusters can be measured by the increase of the sum 
of squared deviations of every point from the centroid of the cluster to which it 
belongs. In each step, all possible pairs of clusters are considered and those two 
that result in the minimum increase of the error sum of squares are merged. 
Compared with the other clustering methods, Ward’s method produces more 
compact clusters (see Fig. 6.6D).

A
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ABDEC
centroid

4/5
1/5

A B

Fig. .. Geometric interpretation of the 
average linkage clustering method. The 
distance between clusters A and B is 
defined as the average of the distances (or 
similarities) between all pairs of objects.

Fig. .. Geometric interpretation of 
the centroid clustering method.

Fig. .. Geometric interpretation of the median 
clustering method.
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The general rule in clustering methods is that there is no single method that 
is best in any situation. Therefore it is advisable to use more than one clustering 
method and to search for similar clusters in resulting dendrograms. It is likely 
that the clusters that appear on dendrograms resulting from several clustering 
methods reflect structure in the dataset, whereas those that appear only in one 
dendrogram reflect properties of a particular clustering method, rather than 
properties of data. The example on Fig. 6.6 shows the results of four different 
cluster analyses based on the same dataset of morphological characters (binary 
and quantitative) of populations of Cardamine amara from the Carpathian and 
Sudeten mountains, using Euclidean distance (Cardamine amara dataset; Mar-
hold, 1992). There are only two clusters of populations merging on the highest 

Fig. .. Dendrograms resulting from the four different clustering methods. A, single linkage; B, complete link-
age; C, average linkage; D, Ward’s methods) based on the same dataset (Cardamine amara dataset, with popula-
tions characterized by mean values of characters as objects; Marhold, 1992). Only division into two clusters on 
the highest level is common to all these dendrograms (except the single linkage method, where only one of these 
clusters appears). Cluster analyses were computed with the SYN-TAX 2000 software (Podani, 2001).
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level that are common to these dendrograms (with the sole exception of the single 
linkage method). Most of the remaining subclusters are artifacts of the particular 
methods.

Dunn & Everitt (1982) concluded that the single linkage method is in most 
cases the least successful (due to phenomenon of chaining), whereas average link-
age and Ward’s methods do fairly well, overall.

The results of cluster analyses can be seriously distorted by the presence of 
outliers, which may represent atypical individuals or populations or even mis-
identified material belonging to a different taxon. Outliers, therefore, are bet-
ter excluded from the analyses. Clustering methods are generally appropriate 
for datasets that describe hierarchical variation, but they are least convenient 
for datasets dealing with clinal variability, i.e., where variation of the characters 
reflects some environmental gradient.

Minimum spanning trees

The method of building minimum spanning trees (Gower & Ross, 1969) is closely 
related to clustering methods, particularly to single linkage. A minimum span-
ning tree is a graph that connects all objects in a way that the resulting sum of 
the edge lengths is the minimum and at the same time leaving no loops in the 
graph (Fig. 6.7). The main difference from the single linkage clustering method is 
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Fig. .. Minimum spanning tree 
from the Cardamine amara dataset 
(Marhold, 1992). Division into the two 
clusters corresponding to those in the 
dendrograms of the complete linkage, 
average linkage, and Wards’s (Fig. 
6.6B–D) methods is marked. Tree was 
computed with the SYN-TAX 2000 
software (Podani, 2001).
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that each vertex on the graph corresponds to a concrete object. Minimum span-
ning trees are essential in checking the validity of two-dimensional ordination 
displays (Dunn & Everitt, 1982; Podani, 2000). The tree projected onto the ordi-
nation diagram (Fig. 6.8) shows whether the close position of the objects on the 
diagram represents an artifact or not. It can reveal, for instance, the “horseshoe 
effect” on the ordination diagram of the principal components analysis.

Ordination methods

Objects being studied can be interpreted as points in a p-dimensional space, 
where p equals the number of characters measured and/or scored on these 
objects. In the case that the objects are characterized by three characters only, 

Fig. .. Minimum spanning tree from the Cardamine amara dataset (with populations char-
acterized by mean values of characters as objects; Marhold, 1992) projected onto the ordination 
diagram of the principal components analysis. The horseshoe effect is visible here. Division 
into two clusters corresponding to those in the dendrograms of the complete linkage, average 
linkage, and Wards’s (Fig. 6.6B–D) methods is marked. Diagram was computed with the SYN-
TAX 2000 software (Podani, 2001).
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one can easily check the distances among them and subsequently also their rela-
tionships in 3-D space. Nevertheless, with an increasing number of characters 
such possibility is lost. For such cases, methods faithfully depicting the relation-
ships among objects in a space of reduced number of dimensions are available. 
Goodall (1954) coined the term “ordination” for such methods, which is cur-
rently interpreted as “any technique that extracts artificial variables in order 
to reduce the dimensionality of data” (Podani, 2000). Probably the most widely 
used ordination method is principal components analysis, followed by princi-
pal coordinates analysis and non-metric multidimensional scaling. Canonical 
discriminant analysis, treated here separately, is also sometimes placed into the 
category of ordination methods.

Principal components analysis

Principal components analysis (PCA; Pearson, 1901; Hotelling, 1933) is a tech-
nique that, as with other ordination techniques, reduces dimensionality of the 
original character space. It transforms an original set of p characters x1, x2, …, 
xp into a new set of uncorrelated characters y1, y2, …, yp, where each character y 
is a linear combination of the original set of characters x (i.e., y1 = a11x1 + a12x2 + 
… + a1pxp  ; y2 = a21x1 + a22x2 + … + a2pxp  ; … yp = ap1x1 + ap2x2 + … + appxp).

The first component axis is derived to encompass the highest percentage of 
variation among objects (Fig. 6.9). Similarly, the second, the third, and remain-
ing component axes are derived to explain the highest percentage of variation left 
after derivation of previous axes. At the same time, relative positions of objects in 

the original character space and that 
in the space determined by the princi-
pal components are the same (just the 
coordinate systems are changed). As 
the first few new dimensions capture 
most of the variation of the original 
dataset, it is possible to check visu-
ally the relationships of objects on a 
two-dimensional plane (Fig. 6.10) or 
in three-dimensional space (Fig. 6.11) 
instead of having as many dimensions 
as original characters (which is impos-
sible to control visually).

Nevertheless, it must be taken 
into consideration that in the case 
that only the first few principal com-
ponents are depicted, the spatial posi-

X

X

PC2

PC1

2

1

Fig. .. Schematic presentation of the orig-
inal character plane (defined by the axes x1 
and x2) and corresponding principal compo-
nent axes (PC1 and PC2), positioned in the 
direction of the highest (PC1) and the second 
highest (PC2) variation among objects.
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for variables is 4.49. The lines 
of eigenvectors (printed in 
red) of the characters 7, 9 and 
10 are almost parallel with 
the first axis, indicating the 
highest influence of these 
characters on the first princi-
pal component axis and thus 
on the division of two groups 
of objects as defined by the 
complete linkage, average 
linkage and Wards’s (Fig. 
6.6B–D) methods (marked 
by the vertical line). Diagram 
was computed with the SYN-
TAX 2000 software (Podani, 
2001).

Fig. .. Three-dimensional ordination diagram of principal components analysis from the 
Cardamine amara dataset (with populations characterized by mean values of characters as 
objects; Marhold, 1992). Based on eigenvalues, the first three components account for 50.3%, 
25.9%, and 11.3% of variation of the original dataset, respectively. Objects (populations) belong-
ing to the two different clusters in the dendrograms of the complete linkage, average linkage, 
and Wards’s (Fig. 6.6B–D) methods are marked by different symbols. PCA was computed 
using SAS 9.1.3 software (SAS Institute, 2007).
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tion of the objects is only an approximation of their relative positions in the 
original character space, and that their Euclidean distances are also only an 
approximation.

PCA is based on reduction of correlations among characters (the new axes, 
principal components are uncorrelated), so its success depends on the amount of 
correlations among the original characters. The higher the correlation is among 
them, the more successful is the result of PCA (i.e., fewer axes are needed to dis-
play the principal relationships among objects).

Computation in principal component analysis is based on eigenanalysis 
of the symmetrical matrix (i.e., matrix with the same number of columns and 
rows). This can be either a correlation or covariance matrix among characters. 
In the case that characters have not been measured in the same scale and a 
covariance matrix is used, data should be standardized prior to analysis. The 
eigenanalysis results in a set of eigenvalues and eigenvectors. There are as many 
eigenvalues and eigenvectors as rows in the symmetrical matrix and as principal 
components. The eigenvalues indicate the proportion of variation of the original 
dataset expressed by the particular component axis, and they are usually pre-
sented as a percentage of their total sum. In the case that a correlation matrix 
is used, the sum of the eigenvalues equals the number of characters; in the case 
of the covariance matrix, it equals the sum of the variances of all characters. 
The eigenvectors (direction cosines) express the direction of vectors character-
izing the influence of the original characters on the principal component axes. 
Eigenvectors can be depicted in an ordination diagram of variables or in a joint 
display (called the biplot) with the result of ordination of objects (Fig. 6.10). Such 
joint display of ordination of objects and characters requires multiplication of 
the character scores by an appropriate factor, as the coordinates of objects and 
characters are expressed on different scales. As an aid for interpretation, lines 
are drawn from the origin towards the points representing characters (Fig. 6.10; 
for details see Podani, 2000).

Although the principal components analysis was originally developed for 
quantitative characters with normal distribution, it can be used, with certain 
reservations, also for binary and semiquantitative characters and is considerably 
robust also with respect to departures of characters from normal distribution. 
Nevertheless, presence of binary data often causes the horseshoe effect (Fig. 6.8). 
The only strict limitation of PCA is with regard to the number of analyzed char-
acters. It should be lower than the number of analyzed objects.

Principal components analysis is often confused with factor analysis. It 
should be stressed that these are two different multivariate methods. Unlike 
PCA, in factor analysis new axes (factors) are extracted to account maximally 
for the covariances (the shared variances) of variables. The main aim is to reveal 
the correlation structure of variables. The results of factor analysis are usually 
presented by an ordination of variables.
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Principal coordinates analysis 

(metric multidimensional scaling, classical scaling)

Principal coordinates analysis (PCoA; Torgerson, 1952; Gower, 1966) is 
a method related to PCA. The procedure places analyzed objects into ordina-
tion space defined by the principal coordinates (new axes, equivalent to prin-
cipal components). Euclidean distances among objects in the PCoA ordina-
tion diagram approximate the original distances among objects based on any 
coefficient of similarity or distance. This method is appropriate especially in 
cases when one has to deal with characters that cannot be used in principal 
component analyses, such as binary characters, where negative matches are not 
meaningful, or with mixed characters that include multistate qualitative char-
acters, where Gower’s coefficient (Gower, 1971) is appropriate. This method is 
useful also in cases when the number of analyzed characters exceeds that of 
analyzed objects.

Somewhat simplified, the principal coordinates analysis involves two steps. 
In the first step, a secondary similarity (or dissimilarity) matrix is computed 
from the primary data matrix, using any similarity or dissimilarity coefficient. In 
the second step, a symmetric matrix, equivalent to the correlation or covariance 
matrix in PCA, is computed, which is, in turn, subject of the eigenanalysis, result-
ing in an ordination diagram and set of eigenvalues. If the secondary matrix is 
based on Euclidean distance, the results of PCA and PCoA are fully identical. 
The main difference between PCA and PCoA is that the relationship between 
the original characters and principal coordinates is not linear, and therefore we 
do not have information on the influence of particular characters on coordinate 
axes. For quantitative characters we can get at least some information in this 
respect by computing the correlation coefficients between given character values 
and score on the coordinate axes.

Non-metric multidimensional scaling (NMDS)

Non-metric multidimensional scaling (Kruskal, 1964) is another method, the 
aim of which is to reduce the number of dimensions in the original character 
space. The main difference among the NMDS on one hand and PCA and PCoA 
on the other, is that NMDS does not preserve exact distances among objects in 
the original character space and approximates only the order of distances among 
objects. Let us suppose that there are four objects and six dissimilarity values for 
pairs of objects that can be ordered in the following way: δ23 < δ12 < δ34 < δ13 < 
δ24 < δ14 (the second and third objects are most similar and the first and fourth 
are most dissimilar). Further suppose that these objects are placed as points in 
Euclidean space and their distances are as follows: d12, d13, d14, d23, d24, d34. In the 
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non-metric multidimensional scaling these distances are considered to be in full 
agreement with the original dissimilarity values if d23 ≤ d12 ≤ d34 ≤ d13 ≤ d24 ≤ d14 
(Kruskal, 1964; Dunn & Everitt, 1982). In other words, the order of distances 
among objects in new Euclidean space is in agreement with the order of the origi-
nal dissimilarities (distances are monotonic with the dissimilarities). Like PCoA, 
NMDS is not limited to Euclidean distances and can be used in combination with 
any other (dis)similarity coefficient. The number of dimensions (two or three) is 
a matter of choice of the user, depending on the value of stress (Kruskal, 1964) for 
a given number of dimensions.

Discriminant analyses

Discriminant analysis comprises several statistical techniques convenient mostly 
for hypotheses testing. Generally, they can be divided into techniques used for 
the interpretation of differences among predefined groups of objects (canonical 
discriminant analysis) and into those whose aim is assignment of objects into 
groups (classificatory discriminant analysis). A separate category is represented 
by stepwise discriminant analysis, the aim of which is to select the most useful 
discriminating characters.

Canonical discriminant analysis gives the possibility of answering two ques-
tions: (1) If and to what extent can predefined groups of objects be distinguished 
based on available characters? (2) Which characters contribute to this differentia-
tion? Classificatory discriminant analyses, on the other hand, derive one or more 
functions with the aim to identify objects. While canonical discriminant func-
tion maximizes separation of predefined groups, classificatory functions mini-
mize the number of misidentified objects (minimize the error rate). For these 
purposes sometimes different algorithms are needed.

It is important to realize that discriminant analyses do not provide oppor-
tunities to test whether there is any other, more successful, grouping of objects 
in the analyzed dataset than that which is being tested. Groups of objects tested 
can be defined by certain morphological characters, ploidy levels, distributional 
areas, or ecological requirements. In any case, the characters that define the 
groups should not be involved in the analyses to avoid circular argumentation.

There are certain requirements for data in discriminant analyses (Klecka, 
1980; Legendre & Legendre, 1998): (1) objects should be characterized by quan-
titative and binary characters, only; (2) no character can be a linear combination 
of any other character; (3) any pair of characters cannot be highly correlated; (4) 
covariance matrices should be approximately equal (homogeneity of covariance 
matrices is tested by the Bartlett test); (5) the distribution of characters within 
each group should be multivariate normal; (6) no character can be invariant in 
any predefined group; and (7) for the number of groups (g), characters (p) and 
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total number of objects (n) should hold: 0 < p < (n  g), and there must be at least 
two groups, and in each group there must be at least two objects.

There is no general agreement to what extent departures can be tolerated 
from the above-mentioned requirements, particularly departures from the mul-
tivariate normal distribution of characters and equality of the group covariance 
matrices. Nevertheless, the prevailing opinion is that discriminant analysis is a 
rather robust technique, which can tolerate some deviations from these assump-
tions (Lachenbruch, 1975; Klecka, 1980). Tests of significance of canonical dis-
criminant functions (e.g., Wilk’s lambda or its associated chi-square test) and 
classifications based on probability of group membership are among those that 
are likely to be influenced by departures from the multivariate normal distribu-
tion of data (Klecka, 1980).

Canonical discriminant analysis (canonical variates analysis)

Canonical discriminant analysis provides the opportunity to view relationships 
among objects in space defined by canonical axes. In some respects it resembles 
the above-mentioned ordination methods (PCA, PCoA, NMDS); nevertheless, it 
differs from them as the main canonical axes maximize differences among pre-
defined groups rather than among individual objects (those characters that con-
siderably differ among groups and have low within-group variation have the high-
est influence on canonical axes). The method was originally proposed by Fischer 
(1936), who incidentally in his original paper used a dataset from plant taxonomy, 
namely length and width of sepals and petals of 150 plants of three Iris species (Iris 
setosa, I. variegata, I. virginica), measured by Edgar Anderson from the Missouri 
Botanical Garden. Generally, the linear discriminant function (Klecka, 1980) is a 
linear combination of discriminant characters: fkm = a0 + a1x1km + a2x2km + … + 
apxpkm, where fkm is a score of canonical discriminant function for the case m in the 
group k, xikm is a value of the discriminative character xi for the case m in the group 
k (total amount of characters is p), and ai are coefficients of discriminant functions 
(i = 0, 1, …, p). Coefficients (a) for the first function are derived so that the group 
centroids (in terms of Mahalanobis distance) are as different as possible. Those 
for the second function are also derived to achieve maximum distance of cen-
troids, but at the condition that values of the first function are not correlated with 
the values of the second. The maximum number of discriminant functions that 
we can derive is equal to the number of variables or groups minus one, whichever 
value is lower. The extent of between-group variation extracted by the discrimi-
nant functions is expressed by corresponding eigenvalues. In interpretation of 
canonical discriminant analyses it is usually enough to interpret the first few 
axes as they are ordered according to their importance. To interpret differences 
among predefined groups we consider relative positions of the group centroids 
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and individual objects on the histograms (in the case of a single discriminant 
function, Fig. 6.12) or ordination diagrams (in the case of two or three functions, 
Figs. 6.13, 6.14).

The actual values of coefficients of discriminant function depend on the 
scale from which the given character is measured, and therefore they are called 
unstandardized coefficients. When standardized, they express unique contri-
butions of a given character for the discriminant function. Nevertheless, if two 
variables share nearly the same discriminating information (i.e., if they are highly 
correlated), they share also their contribution to the score and consequently, their 
standardized coefficients may be smaller than when only one of these variables 
is used. Therefore, the correlation of the original characters and canonical axes 
is better reflected by the product-moment correlation coefficients between them 
(called total canonical structure or total structure coefficients). They can be con-
sidered to be the cosines for the angles formed by the characters and the discrimi-
nant function (Klecka, 1980).
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Fig. .. Histogram of the canonical discriminant analysis of the Cardamine amara dataset 
(with individual plants as objects; Marhold, 1992). Two groups in the discriminant analysis 
correspond to those defined by complete linkage, average linkage, and Wards’s (Fig. 6.6B–D) 
methods (based on the populations, characterized by the mean values of characters). The aim 
of the analysis was to test whether two groups revealed in the analyses based on population means 
are recognizable also on the level of individual plants (which is not always the case, see, e.g., ana-
lysis of the Cardamine pratensis group by Marhold, 1996). Canonical discriminant analysis was 
computed using SAS 9.1.3 software (SAS Institute, 2007).
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Fig. .. Ordination diagram of the canonical discriminant analysis of the individuals of Car-
damine amara subsp. amara (1), subsp. austriaca (2), and Italian (3) and Catalonian (4) popula-
tions of C. amporitana based on morphological characters (Lihová & al., 2004). 95% isodensity 
circles, expected to contain 95% of the members of the group (Podani, 2000, 2001) calculated 
for the two canonical axes are drawn around the centroids. Individual objects are not shown. 
The centroids are marked by the group numbers. The radius of the circle is independent of the 
number of objects analyzed. Canonical discriminant analysis was computed using SYN-TAX 
2000 software (Podani, 2001).

Fig. .. Ordination diagram of the canonical discriminant analysis of the individuals of Car-
damine raphanifolia, with groups defined based on geographical origin of populations (Perný 
& al., 2005). 95% isodensity circles, expected to contain 95% of the members of the group, are 
drawn around the centroids. Individual objects are shown and marked by different symbols. 
Canonical discriminant analysis was computed using SYN-TAX 2000 software (Podani, 2001).
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Classificatory discriminant analysis

There are two main goals of the classificatory discriminant analyses: (1) to derive 
an identification (classification) criterion to classify objects of unknown status, 
and (2) to test accuracy of the classification criterion to assess exactness of group 
separation.

In the first case, classification function or functions are derived based on 
the training dataset of two or more groups of objects, and then this function is 
applied to the objects of unknown group membership to determine to which 
group they most likely belong (or which group they most resemble). There are 
several possibilities here: (1) The simplest version of the classificatory discrimi-
nant analysis is the classification of objects according to the score on the canoni-
cal discriminant function. An example of such is the Atkinson discriminant 
function, which is used for the determination of two species of the genus Betula 
in the New Flora of the British Isles (Stace, 2010: 295) (Fig. 6.15), and which was 
developed by Atkinson & Codling (1986). (2) It is also possible to classify objects 
according to projection in the canonical ordination space. (3) The other option is 
to derive a separate function for each group and to compute scores for each object 
and for each function; the object is subsequently classified into the group with 

Fig. .. Atkinson discriminant function for identification of Betula pendula and B. pubescens 
(Stace, 2010: 295): 12LTF + 2DFT + 2LTW – 23 (based on means from five short-shoot leaves). 
LTF, Leaf tooth factor (number of teeth projecting beyond line connecting tips of main teeth 
at ends of third and fourth lateral veins, subtracted from total number of teeth between these 
two main teeth); LTW, leaf tip width (width, in mm, of leaf 1/4 distance from apex to base; DFT, 
distance to first tooth (distance, in mm, from apex of petiole to first tooth). If the solution is 
greater than zero, the tree is likely to be B. pendula; if it is less than zero, the tree is likely to be 
B. pubescens. This method gives a correct rate of classification of 93% (tested against chromo-
some number; Atkinson & Codling, 1986).

Betula pubescens = –35
B. pendula = +21

LTF=1

LTW=19

DFT=7DFT=7

DFT=12

LTF=3

LTW=8
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the highest score. (4) The next option is to calculate Mahalanobis distances from 
the individual objects of each of the group centroids; objects are then classified 
into the closest group. (5) The option of the classificatory discriminant analysis, 
usually incorporated in statistical program packages (e.g., SAS Institute, 2007), 
is based on probability models. Under the assumptions of multivariate normal 
distribution of characters, most objects cluster near the group centroids, whereas 
the density of objects diminishes further away from the centroid. Based on this 
assumption, the probability of group membership is computed for each object 
and each group. If the dataset conforms to the requirement of having equality of 
covariance matrices, a simple linear discriminant function (based on the pooled 
covariance matrix) is computed; otherwise a quadratic discriminant function 
(based on the within-group covariance matrices) is used. In the case that the data 
do not show a multivariate normal distribution, non-parametric methods, such 
as k-nearest neighbors, can be employed.

The accuracy of the classification criterion can be tested either by resubsti-
tution, where computation of the classification criterion is based on the entire 
dataset, and this criterion is subsequently tested using the same dataset, or by 
cross-validation, wherein the classification criterion is derived from the dataset 
of n–1 objects and then applied to classify the one individual left out. In the 
first instance there is only one discriminant function computed, but in the latter 
there are as many functions as objects. Both approaches can be applied to linear 
and quadratic functions using parametric methods or to functions derived using 
non-parametric methods. Results of the analysis are presented by a classification 
table with the proportion (%) of correctly classified individuals in each group. 
It is also possible to determine the probability of group membership for each 
object. An example of results from classificatory discriminant analysis based on 
a dataset from individual plants in Cardamine amara (Marhold, 1992) is given 
in Table 1.

Table .. Results of the classificatory discriminant analysis of the dataset of Cardamine amara 
(Marhold, 1992). Comparison of the results of the parametric discriminant analysis and non-
parametric k-nearest neighbors method. The aim of the analysis was to test whether two groups 
revealed in the analyses based on population means are recognizable also on the level of indi-
vidual plants.

Actual group 

Predicted group membership
(Number of observations and percent 

classified into groups)
Group 1 Group 2

Group 1
Parametric method 1323 / 97.35%  36 / 2.65% 
Nearest neighbor 1353 / 99.56%   6 / 0.44%

Group 2
Parametric method   13 / 1.73% 740 / 98.27%
Nearest neighbor    7 / 0.93% 746 / 99.07%
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Stepwise discriminant analysis

There are some situations when a reduction of the number of characters is needed 
in order to get a subset of most useful characters that discriminate predefined 
groups of objects. Some characters might have only low discriminative power, 
whereas others might be good discriminators on their own. Nevertheless, as 
they share discriminating information with other characters, their contribution 
becomes somewhat redundant. The way to eliminate such unnecessary charac-
ters is the use of a stepwise discriminant analysis (Klecka, 1980). Characters are 
added to the subset in subsequent steps. First, the best discriminating character 
is selected. Then, in a series of steps further characters are added one by one. At 
each step all remaining characters are tested using the F-to-enter statistic, which 
tests the additional discriminative power introduced by the character, taking into 
account the discriminative power achieved by the characters already selected. At 
the same time, at each step all characters already included are tested using F-to-
remove statistic, testing the significance of the decrease of total discriminative 
power, should the particular character be removed from the list of those already 
selected (Klecka, 1980). After the final step, the characters are ordered according 
to the F-to-remove statistic, the character with the highest F-to-remove value 
being the most important for separation of the predefined groups. As the number 
of characters is not limited in stepwise discriminant analysis (unlike in canoni-
cal and classificatory ones), Álvarez Fernández & Nieto Feliner (2001) used this 
method to reduce the number of characters from the initial character set, to sat-
isfy the criterion of the maximum possible number of characters (in relation to 
the number of analyzed individuals and predefined groups) for the subsequent 
canonical discriminant analysis.

Conclusion

For the monographer, some of the most complex taxonomic situations often 
occur at the specific and especially infraspecific levels. While intuitive pattern 
recognition efforts may be successful in disentangling sets of populations and 
yielding a structure of information suitable for direct classification, sometimes 
help is required to see more clearly what patterns actually exist (if any). Morpho-
metric methods offer a large tool box of ways to analyze and dissect variation 
at the populational level in complex situations. Whereas phylogenetic (cladistic) 
methods are extremely valuable for constructing classifications above the spe-
cies level within a genus, they are not able to deal with complex mosaic patterns 
often encountered at the infraspecific level. This is the role and real strength of 
morphometrics for the monographer.
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